Apatite-forming ability of titanium in terms of pH of the exposed solution.

نویسندگان

  • Deepak K Pattanayak
  • Seiji Yamaguchi
  • Tomiharu Matsushita
  • Takashi Nakamura
  • Tadashi Kokubo
چکیده

In order to elucidate the main factor governing the capacity for apatite formation of titanium (Ti), Ti was exposed to HCl or NaOH solutions with different pH values ranging from approximately 0 to 14 and then heat-treated at 600°C. Apatite formed on the metal surface in a simulated body fluid, when Ti was exposed to solutions with a pH less than 1.1 or higher than 13.6, while no apatite formed upon exposure to solutions with an intermediate pH value. The apatite formation on Ti exposed to strongly acidic or alkaline solutions is attributed to the magnitude of the positive or negative surface charge, respectively, while the absence of apatite formation at an intermediate pH is attributed to its neutral surface charge. The positive or negative surface charge was produced by the effect of either the acidic or alkaline ions on Ti, respectively. It is predicted from the present results that the bone bonding of Ti depends upon the pH of the solution to which it is exposed, i.e. Ti forms a bone-like apatite on its surface in the living body and bonds to living bone through the apatite layer upon heat treatment after exposure to a strongly acidic or alkaline solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments

To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate...

متن کامل

Titanium and Fluoride Co-substitution in Hydroxyl Apatite

Titanium and fluoride-containing hydroxyl apatite were synthesized through precipitation method following by a hydrothermal stage at 100oC for 6 hours. XRD analysis of the sample scalcinedat650oC for 1 hour revealed that all samples have pure apatite structure. The existence of Fluoride substitution in apatite structure was confirmed by FTIR(Fourier Transform Infrared Spectroscopy) analysis. Su...

متن کامل

Preparation of bioactive titania films on titanium metal via anodic oxidation.

OBJECTIVES To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). METHODS Titanium oxide films were prepared using an anodic oxidation method on the surface of tit...

متن کامل

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

متن کامل

Origin and evolution of ore-forming fluids in the magnetite±apatite Lake Siah deposit (Bafq): Evidence of fluid inclusions and oxygen stable isotope

The Lake Siah magnetite ± apatite deposit is situated in the northeastern of Bafq and Central Iran tectonic zone. The host rock of deposit is composed from lower Cambrian volcano-sedimentary sequence that has exposed as caldera complex. The iron mineralization is as massive ore and includes magnetite and hematite which form with apatite, quartz and calcite gangue minerals. Based on fluid inclus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 74  شماره 

صفحات  -

تاریخ انتشار 2012